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Background: Arterial spin labeling (ASL) perfusion magnetic resonance imaging (MRI) denoising through deep learning
(DL) often faces insufficient training data from patients. One solution is to train DL models using healthy subjects’ data
which are more widely available and transfer them to patients’ data.
Purpose: To evaluate the transferability of a DL-based ASL MRI denoising method (DLASL).
Study Type: Retrospective.
Subjects: Four hundred and twenty-eight subjects (189 females) from three cohorts.
Field Strength/Sequence: 3 T two-dimensional (2D) echo-planar imaging (EPI)-based pseudo-continuous ASL (PCASL) and
2D EPI-based pulsed ASL (PASL) sequences.
Assessment: DLASL was trained using young healthy adults’ PCASL data (Dataset 1: 250/30 subjects as training/validation
set) and was directly transferred (DTF) to PCASL data from Dataset 2 (45 subjects test set) of normal controls (NC) and
Alzheimer’s disease (AD) groups. DLASL was fine-tuned (DLASLFT) and tested on PASL data from Dataset 3 (103 subjects
test set) of NC and AD. An existing non-DL method (NonDL) was used for comparison. Cerebral blood flow (CBF) images
from ASL MRI were compared between NC and AD to assess characteristic hypoperfusion (lower CBF) patterns in
AD. CBF image quality and CBF map sensitivity for detecting hypoperfusion using peak t-value and suprathreshold cluster
size are outcome measures.
Statistical Tests: Paired t-test, two-sample t-test, one-way analysis of variance, and Tukey honestly significant difference,
and linear mixed-effects models were used. P < 0.05 was considered statistically significant.
Results: Mean contrast-to-noise ratio (CNR) of Dataset 2 showed that DTF outperformed NonDL (AD: 3.38 vs. 2.64,
NC: 3.80 vs. 3.36). On Dataset 3, DLASLFT outperformed NonDL measured by mean CNR (AD: 2.45 vs. 1.87, NC:
2.54 vs. 2.17) and mean radiologic score (2.86 vs. 2.44). Image quality improvement was significant on both
test sets. DTF and DLASLFT improved sensitivity for detecting AD-related hypoperfusion patterns compared
with NonDL.
Data Conclusion: We demonstrated the DLASL’s transferability across different ASL sequences and different populations.
Level of Evidence: 3
Technical Efficacy: Stage 2
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Arterial spin labeling (ASL) perfusion magnetic resonance
imaging (MRI) is a noninvasive technique for quantify-

ing cerebral blood flow (CBF)1 and has been increasingly
used in neuroscientific and translational studies for assessing
brain function and neurovascular conditions.2 In ASL MRI,
arterial blood is labeled with radio-frequency pulses in loca-
tions proximal to the imaging plane. A perfusion-weighted
MR image is acquired after the labeled spins perfuse into
brain tissues. To remove the background MR signal, a control
image is also acquired using the same ASL sequence and
acquisition timing but with phase modulations to the labeling
pulses so that arterial spins can approximately stay unaffected.
Perfusion signal is subsequently calculated through pair-wise
subtraction of the spin labeled image (L image) and the spin
untagged image (the control image or C image) and is
converted into the quantitative CBF in units of mL/100 g/
minute.3 Limited by several factors including the longitudinal
relaxation rate (T1) of blood water, labeling efficiency, and
the post-labeling delay, the labeled blood signal is inherently
weak, resulting in a low signal-to-noise ratio (SNR) and lim-
ited spatial resolution.4

Over the past decades, various methods have been pro-
posed to improve ASL CBF quantification results through
model-based and data-driven approaches.4–7 Machine learning
represent a new direction in this endeavor and the published
studies include the use of principal component analysis,8 inde-
pendent component analysis,9 support vector machine,10 low-
rank and sparse decomposition,6 and the spatio-temporal total
generalized variation constrained method.11 Deep machine
learning represents a recent focus in ASL MRI processing
because of its high flexibility for modeling the nonlinear trans-
form underlying denoising or other spatial-temporal processing.
Deep learning (DL) has been used in ASL MRI to improve
SNR, spatial resolution, and temporal resolution in ASL
MRI.4,12–20 For denoising per se, DL has the advantage of
learning the highly nonlinear noise removal function based on
the between neighboring voxel correlations, non-local data fea-
tures, as well as the perfusion signal data distributions of a large
number of subjects. Consequently, it has shown state-of-art per-
formance when trained and tested in normal health subjects’
data.4 These advantages, however, cannot overwrite a general
question that each machine learning algorithm has to face: is
the deep neural network learned from one dataset valid for
another one? This generalizability question has not been exam-
ined in ASL MRI but it is very important for the potential
translational application of the DL methods. For example, a
DL model learned from young healthy subjects may not work
for data acquired from older normal subjects, or patients with
Alzheimer’s Disease (AD) using the same or different ASL
imaging sequences.

The purpose of this study was to evaluate the transferabil-
ity of the recently developed DL-based ASL MRI denoising
method (DLASL)4 for clinical applications in AD. We chose

AD as a test point because ASL MRI has been widely used in
AD research and revealed a consistent hypoperfusion pattern in
the precuneus and lateral parietal cortex as well as prefrontal
cortex in AD.21,22 We hypothesized that DLASL trained with
healthy subjects’ data can be transferred to AD ASL MRI and
will demonstrate higher sensitivity for probing the hypo-
perfusion patterns in AD as compared with normal elderly sub-
jects (NC).

Materials and Methods
Datasets
The study and subject consent form were reviewed and approved by
the Institutional Review Board (IRB). All participants signed a written
consent form before participating in the study. Retrospectively using
this dataset was approved by IRB as well. All healthy volunteer scans
used in this study were also approved by IRB and with the written con-
sent from the participants. Three different datasets were included in this
study.

Dataset 1: This was the same as that reported in the original
DLASL paper.4 It contained ASL MRI from 280 young healthy adults
(age: 23–47, 110 females, 170 males). The data were acquired in a Sie-
mens 3 T Trio scanner with a two-dimensional (2D) gradient echo echo-
planar imaging readout based pseudo-continuous ASL (PCASL)
sequence23 with the following parameters: 40 control/labeled image pairs
with labeling time = 1.5 sec, post-labeling delay = 1.5 sec, field of view
(FOV) = 22 cm, matrix = 64 � 64, repetition time/echo time (TR/
TE) = 4000/11 msec, 20 slices with a thickness of 5 mm plus
1 mm gap.

Dataset 2: It contained 45 subjects (age: 51–83, 25 females,
20 males), i.e., 21 AD patients and 24 normal elderly control (NC).
These data were acquired in the sameMR scanner using the same PCASL
sequence with the same acquisition parameters as used in Dataset 1.

Dataset 3: The dataset was downloaded from the AD Neuroim-
aging Initiative (ADNI) (http://adni.loni.usc.edu/) and included struc-
tural MRI and ASL MRI from 103 subjects, i.e., (age: 59–87,
54 females, 49 males), i.e., 53 AD patients and 50 NCs. These data
were acquired in Siemens 3 T MR scanners using the Siemens product
2D Proximal Inversion with Control of Off-Resonance Effects
(PICORE) sequence, which is a pulsed ASL sequence using the quanti-
tative imaging of perfusion using a single subtraction II (Q2TIPs) tech-
nique for defining the spin bolus.24 The acquisition parameters were
52 control/labeled image pairs, TR/TE = 3400/12 msec, TI1/TI2 =

700/1900 msec, FOV = 256 mm, 24 sequential 4 mm thick slices
with a 25% gap between the adjacent slices, partial Fourier factor = 6/
8, bandwidth = 2368 Hz/pix, and imaging matrix = 64 � 64.

Data Preprocessing
All imaging data were processed using ASLtbx25 and SPM12
(Wellcome Centre for Human Neuroimaging, London, UK, http://
www.fil.ion.ucl.ac.uk/spm). The following steps were included in ASL
MRI preprocessing: ASL MRI specific motion correction;5 temporal
denoising;5 spatial smoothing; CBF quantification; outlier cleaning.30

Mean CBF map was then calculated from the outlier cleaned CBF
image series. To assess the AD vs. NC CBF difference, the mean CBF
images and those denoised by DL networks were registered by using
deformable image registration algorithm as implemented in SPM
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12, with the high-resolution structural MRI and subsequently registered
into the Montreal Neurological Institute standard brain (MNI
space)26,27 using SPM12.

DL Network Architecture
The original DLASL model4 was used in this study. Figure 1 shows
the architecture of DLASL. The Dilated Wide Activation Network4

was used to extract more data features at each block. Rather than
training the network using CBF maps in the MNI space26,27 as in
the previous study,4 DLASL was trained using the CBF maps in the
native space (before warping into the MNI space). Considering the
reduced number of image slices for network training, the number of

wide activation residual blocks was reduced to be three in each path-
way to reduce the overfitting risk. Moreover, we used Huber loss29

in this study because it is more robust to outliers than L2 loss and is
more precise and stable than L1 loss during the training.

Model Training and Evaluation
DLASL was mainly trained using the PCASL data in Dataset 1. CBF
image slices from 250 subjects were used as the training dataset. CBF
image slices from another 30 subjects were used for validation. The
model was trained using all axial image slices, each with 64 � 64
pixels. During training, the input to DLASL were mean images of
the first 10 CBF images of the entire ASL scan. We performed the

FIGURE 1: Illustration of the architecture of the DLASL. The output of the first layer was fed to both local pathway and global
pathway. Each pathway contains three consecutive wide activation residual blocks. Each wide activation residual block contains two
convolutional layers (3 � 3 � 128 and 3 � 3 � 32) and one activation function layer. The 3 � 3 � 128 convolutional layers in the
global pathway were dilated convolutional layers28 with a dilation rate of 2, 4 and 8 respectively (a � b � c indicates the property of
convolution. a � b is the kernel size of one filter and c is the number of the filters).
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priors-guided slice-wise adaptive outlier cleaning30 by excluding the
outlier slices in CBF image series of the whole ASL scan. The refer-
ence image was the mean image of the outlier-cleaned CBF image
series of the entire ASL scan. After DLASL was trained, the outlier-
cleaned mean CBF images were input to the network to generate the
DL denoised CBF maps.

ASL MRI in Dataset 1 and Dataset 2 were acquired using the
same PCASL sequence with the same acquisition parameters. Except
for the CBF value difference between the populations (subjects
in Dataset 2 [age: 51–83] were older than those in Dataset
1 [age: 23–47]), these two datasets were both acquired in Siemens 3 T
MR scanner using the same PCASL sequence, making a direct model
transfer possible. We then directly applied the DLASL network trained
with Dataset 1 to the data in Dataset 2 without model retraining.

ASL MRI (Dataset 3) was acquired with a PASL sequence
from ADNI (http://adni.loni.usc.edu/), which is known to have
lower SNR than PCASL.31 To consider the effects of the reduced
SNR in PASL on the performance of DLASL, we tested the trained
DLASL without and with fine-tuning (i.e., retraining the model
which was pre-trained with PCASL data by using PASL data). All
103 subjects were used for fine-tuning the model. The input and
the reference were the same outlier-cleaned mean CBF maps. Since
the total number of ADNI subjects was 103, which is smaller than
the number of subjects in Dataset 1, the chance of overfitting the
model to the 103 subjects’ data is considered very low.

All networks were implemented using the Keras platform.32 For
PCASL data in Dataset 1, the network was trained from scratch using
adaptive moment estimation algorithm33 with a basic learning rate of
0.001. When we applied transfer learning, we used a learning rate of
0.0001 to fine-tune the pre-trained model. Early stopping technique34

was used to avoid overfitting. If the model’s performance on the valida-
tion set did not improve after 10 epochs, we stopped the training pro-
cess. As shown in Fig. 2, we monitored the training loss and validation
loss during training/fine-tuning the models. All the models were
trained with batches, each containing 64 training samples. The models
were trained/fine-tuned with a total of 100 epochs. TensorFlow35 was
used as the backend of Keras to train all the models. All experiments
were performed on a PC with Intel(R) Core(TM) i7-5820k CPU
@3.30 GHz and a Nvidia GeForce Titan Xp GPU.

For easy reading, we refer to the priors-guided slice-wise adap-
tive outlier cleaning method,30 the DLASL direct transfer (without
fine-tuning), and DLASL with fine-tuning as NonDL, DTF, and
DLASLFT, respectively.

Evaluation Metric
Contrast-to-noise ratio (CNR) was used as the quantitative measure-
ment for image quality assessment of ASL CBF denoising by differ-
ent methods.36 A grey matter (GM) and a white matter (WM) mask
were defined in the CBF maps by projecting the GM/WM masks
defined by the structural MRI-based GM/WM image segmentation.
CNR was calculated by:

CNR¼Mean GMð Þ
std WMð Þ ð3Þ

where mean(GM) and std(WM) denote mean CBF in the GM mask
and std of CBF values in the WM mask, respectively.

Image Quality Assessment
CBF image quality was qualitatively assessed by three blinded indepen-
dent reviewers, i.e., J.J. (20 years of experience), D.D. (9 years of expe-
rience), and E.M. (28 years of experience). The quality score ranges
from 1 (worst quality) to 4 (best quality). The score means: “1 = worst
quality in terms of severe artifacts, too low or negative perfusion
(the black holes in the brain) and abnormally high perfusion value”; “2
= moderate quality in terms of large artifacts, presence of negative per-
fusion voxels, image intensity in the range of normal perfusion of
adults”; “3 = acceptable quality in terms of mild artifacts, grey matter
to white matter perfusion contrast”; and “4 = clear perfusion image
with good grey matter to white matter perfusion contrast, the least
image artifacts such as rings or bright strips,” respectively. We ran-
domly selected CBF images from 30 subjects (15 AD and 15 NC)
processed by the three different methods: NonDL, DTF, and
DLASLFT. The CBF images were shuffled before they were presented
to the three blinded independent reviewers.

FIGURE 2: Left, training and validation loss of DLASL on Dataset 1. Right, training and validation loss of DLASL on Dataset 3.
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Statistical Analyses
After obtaining the CNRs of the three denoising methods
NonDL, DTF, and DLASLFT, a group of paired t-tests and two-
sample t-tests were performed. On Dataset 2, we performed the
paired t-test between the methods, NonDL and DTF, on the AD
group and NC group. We then performed paired t-tests between
methods, DTF vs. the NonDL, and methods, DLASLFT
vs. NonDL, on both AD group and NC group of Dataset 3. On
both Dataset 2 and Dataset 3, to assess the hypoperfusion in AD,
a voxel-wise two-sample t-test was performed in SPM12 using the
CBF maps (with or without DL denoising) spatially normalized
into the MNI space. After the three pre-selected reviewers evalu-
ated the denoising results generated by the NonDL, DTF, and
DLASLFT on the selected 30 subjects, we performed the one-way
analysis of variance (ANOVA) on the average evaluation scores of
each method. In addition, we performed the Tukey honestly sig-
nificant difference post-hoc tests for all pairwise group compari-
sons using 0.05 as the familywise error rate. At last, a linear
mixed-effects model incorporating fixed effects (three denoising
methods) and random effects (three reviewers) was used to assess
the evaluation scores which quantify the image qualities and the
transfer capability of different methods. Moreover, the interaction
between methods and reviewers was considered and to be tested

for its statistical significance. We intend to investigate how signifi-
cant each level of effects (methods and reviewers) affects the evalu-
ation scores (and eventually the transfer capability). In this study,
P < 0.05 was considered statistically significant.

Results
Qualitative Evaluation
Figure 3 showed CBF images from a representative AD sub-
ject and NC subject from Dataset 2. Figure 3a,b represented
the AD patient’s CBF maps processed by the conventional
processing method and DTF, respectively. Compared with
Fig. 3a, Fig. 3b showed better image quality in terms of fewer
artifacts, especially on the boundary of the CBF map.
Figure 3c,d was the NC’s CBF maps produced by the
NonDL and DTF. Figure 3d showed better image quality
than Fig. 3c. Figure 3 indicated that DTF produced better
image quality than the NonDL for both AD and NC
subjects.

Figure 4 showed the denoised PASL CBF images from
a representative AD subject and a NC subject from Dataset
3. Figure 4a–c was the CBF images of an AD patient

FIGURE 3: Mean PCASL CBF images of a representative AD subject and a NC subject from dataset 2. The rows from top to bottom
are: (a) CBF map of an AD patient generated by the NonDL (pseudo ground truth)30; (b) DTF denoised CBF map from the same AD
patient; (c) CBF map of a NC by the NonDL (pseudo ground truth); (d) DTF denoised version of (c). The noisy structures can only be
removed by DTF were illustrated with red arrows. PCASL = pseudo-continuous arterial spin labeling; CBF = cerebral blood flow; AD
= Alzheimer’s disease; NC = normal controls.
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processed by the NonDL, DTF, and DLASLFT. Directly
transferring the DLASL trained with the young adults’
PCASL data to the ADNI PASL data produced higher CBF
values as reflected by the image intensity (Fig. 4b) than the
NonDL (Fig. 4a). Fine-tuning the model yielded similar CBF
values (Fig. 4c) to those by the NonDL (Fig. 4a). Both
Fig. 4b,c showed improved image qualities as compared with
Fig. 4a. For the NC subject, both DTF (Fig. 4e) and
DLASLFT (Fig. 4f) produced CBF images with improved
quality, compared with the NonDL (Fig. 4d). DLASLFT
yielded similar CBF values to those generated by the NonDL,
while DTF produced CBF images with higher image intensity
than the NonDL did.

Quantitative Evaluation
Table 1 showed the CNRs of three different denoising
methods on Dataset 2 and Dataset 3. Figures 5 and 6 showed
the box plots of CNRs on both the PCASL sequences from
Dataset 2 and PASL sequences from Dataset 3. Figure 5 rev-
ealed that DTF consistently achieved higher CNRs on both
AD group and NC group of Dataset 2 than the NonDL.30

The image quality improvement on both AD and NC groups
of Dataset 2 by DTF was statistically significant as confirmed
by the paired t-test. As shown in Fig. 6, both DTF and
DLASLFT outperformed the NonDL. The paired t-test of
DTF vs. the NonDL and DLASLFT vs. the NonDL was sig-
nificant on both AD group and NC group of Dataset

FIGURE 4: Mean CBF images of a representative AD subject and a NC subject produced by different methods on PASL sequences
from Dataset 3. The rows from top to bottom are: (a) Output of the NonDL (pseudo ground truth) in Ref. 30 (input is an AD subject);
(b) output of the DTF with the same AD subject as the input; (c) output of DLASLFT with the same AD subject as the inputs; (d)
output of the NonDL (pseudo ground truth) in Ref. 30 (input is a NC subject); (e) output of DTF with the same NC subject as the
input; (f) output of DLASLFT with the same NC subject as the input. CBF = cerebral blood flow; AD = Alzheimer’s disease; NC =

normal controls; PASL = pulsed arterial spin labeling.
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3. Hence, the image quality improvement of the proposed
two DL-based methods was statistically significant on both
AD group and NC group of Dataset 3.

Figures 7 and 8 showed the resulting T-maps of the
AD vs. NC CBF two-sample t-test using data from Dataset
2 (PCASL data) and Dataset 3 (PASL data), respectively.
The statistical significance level was defined by the same
threshold of P < 0.001 for all T-maps associated with each of
the many two-sample t-tests. Both figures showed that DL
methods yielded spatially more extended hypoperfusion pat-
terns in the well-characterized frontal–parietal regions than
the NonDL method. In Fig. 8, DTF only exhibited minor
hypoperfusion detection sensitivity improvement. With
model refining, DLASLFT (the third row of Fig. 8) showed
substantially enlarged suprathreshold hypoperfusion clusters
in the precuneus and parietal cortex. Mean CBF values,
peak t–values, and the locations in the MNI space of
the NC vs. AD CBF two-sample t-test were listed in
Tables 2 and 3. Suprathreshold clusters with a size >100
were retained. In Table 2, DTF showed overall larger
cluster sizes than that of the NonDL. In Table 3,
DLASLFT generated clusters with larger sizes than the
NonDL did.

TABLE 1. Contrast-to-Noise Ratio (CNR, Mean � SD)
of NonDL, DTF, and DLASLFT on Test Datasets

Data Method Group CNR

Dataset 2

NonDL AD 2.64 � 0.62

DTF AD 3.38 � 0.40

NonDL NC 3.36 � 0.65

DTF NC 3.80 � 0.41

Dataset 3

NonDL AD 1.87 � 0.70

DTF AD 3.82 � 0.57

DLASLFT AD 2.45 � 0.49

NonDL NC 2.17 � 0.69

DTF NC 4.10 � 0.64

DLASLFT NC 2.54 � 0.49

AD = Alzheimer’s disease; NC = normal controls.

FIGURE 5: The box plot of the CNR from Dataset 2 (i.e., 21 AD subjects’ CBF maps and 24 NC subjects’ CBF maps) with different
processing methods. CNR = contrast-to-noise ratio; AD = Alzheimer’s disease; CBF = cerebral blood flow; NC = normal controls.

FIGURE 6: The box plot of the CNR from Dataset 3 (i.e., 53 AD subjects’ CBF maps and 50 NC subjects’ CBF maps) with different
processing methods. CNR = contrast-to-noise ratio; AD = Alzheimer’s disease; CBF = cerebral blood flow; NC = normal controls.
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FIGURE 7: The resulting T map of two-sample t-test (AD vs. control) on Dataset 2. The top row shows the results obtained by the
NonDL.30 The bottom row shows the results obtained by the DTF. From left to right: slices 95, 100, 105, 110, 115, 120, and 125 in
MNI space. Display window: [�4, �6]. P-value threshold is 0.001. AD = Alzheimer’s disease; MNI = Montreal Neurological Institute.

FIGURE 8: The resulting T map of two-sample t-test (AD vs. control) on Dataset 3. The top row, the middle row, and the bottom row
show the results obtained by NonDL,30 DTF, and DLASLFT, respectively. From left to right: slices 70, 80, 90, 100, and 110 in MNI
space. Display window: [�3, �5]. P-value threshold is 0.001. AD = Alzheimer’s disease; MNI = Montreal Neurological Institute.

8

Journal of Magnetic Resonance Imaging



Subject Image Quality Assessment
In Table 4, the average evaluation scores of 30 subjects pro-
vided by three reviewers for NonDL, DTF, and DLASLFT
were 2.44, 2.02, and 2.86, respectively. Figure 9 showed the
100% stacked bar charts of three reviewers’ reading scores of
PASL CBF images from Dataset 3 processed by different
methods.

The resulting F-statistic and P-values of ANOVA indi-
cated the statistically significant differences between the com-
pared methods. The corrected P-values of comparison
between DLASLFT and DTF, comparison between
DLASLFT and the NonDL, and comparison between DTF
and NonDL suggested statistically significant differences in all
pairwise group comparisons.

In the linear mixed-effects model, the P-value of the
interaction between reviewers and denoising methods was
0.2215, indicating no significant interaction effect. We,
therefore, refitted the model by removing the interaction term
and the updated P-values for the two effect terms. The
P-values indicated reviewers’ effects were not statistically sig-
nificant (P-value = 0.2) but denoising methods significantly
affected the evaluation scores, i.e., the underlying transferabil-
ity of different methods as a consequence.

Discussion
We have recently proposed a two-pathway-based DL net-
work, the DLASL for ASL MRI denoising.4 In the original

TABLE 2. Cluster Size, Peak t-Value, Mean CBF (Mean � SD) of Dataset 2

Method Cluster Size Peak t-Value Peak t-Locations AD Mean CBF NC Mean CBF

NonDL 4274 �7.99 �50, �40, 44 24.44 � 8.93 36.90 � 11.12

1463 �5.71 �16, 12, 18 20.11 � 8.08 31.45 � 9.71

913 �5.82 �2, 50, �4 28.04 � 5.46 41.55 � 4.94

795 �6.07 34, �68, 40 29.12 � 2.41 43.19 � 2.63

470 �6.72 16, �12, 18 13.40 � 5.03 26.19 � 6.05

422 �5.24 44, �12, 2 31.94 � 3.73 44.37 � 3.97

253 �5.55 36, �40, 16 11.16 � 3.82 19.64 � 4.73

239 �5.69 �38, 18, �2 33.85 � 2.56 46.15 � 2.58

136 �4.91 36, 8, �42 21.93 � 4.13 36.52 � 4.00

113 �5.10 26, 34, 42 28.85 � 1.90 40.24 � 1.30

110 �4.71 60, �34, �22 16.88 � 8.30 39.63 � 10.58

104 �5.62 50, �56, �14 24.71 � 2.94 43.09 � 1.93

DTF 4470 �6.38 �30, 18, 48 30.11 � 4.67 39.80 � 5.79

2726 �7.36 �24, �62, 36 28.78 � 5.08 38.06 � 6.26

1577 �5.56 34, �62, 44 30.48 � 2.64 41.50 � 3.48

1487 �5.64 �2, �64, 40 33.92 � 3.78 45.18 � 5.00

1079 �5.36 44, 14, 42 31.62 � 2.55 42.34 � 2.51

495 �5.54 �6, 36, 48 31.25 � 2.19 42.51 � 2.25

383 �4.72 �4, 52, �2 29.85 � 1.67 40.24 � 1.22

313 �5.79 12, 8, 14 21.03 � 2.10 28.62 � 2.44

130 �4.86 62, �36, �10 23.02 � 6.65 33.85 � 6.25

116 �4.68 �60, �24, 18 34.23 � 0.64 42.05 � 0.79

111 �5.48 �10, �92, 4 26.68 � 2.04 34.11 � 1.64

AD = Alzheimer’s disease; CBF = cerebral blood flow; NC = normal controls.
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paper, DLASL was trained on CBF images calculated from
PCASL data from a group of young healthy subjects.
Although DLASL showed promising denoising results in
young healthy subjects, its benefit for older subjects including
patients with AD has not been examined. Also, since ASL
MRI data have been acquired using different sequences,
another important question is whether DLASL can be gener-
alizable to ASL CBF images acquired with different ASL
MRI sequences. The purpose of this study was to address
these two questions. Our strategy was to use direct transfer
learning or transfer learning with moderate model fine-
tunning. Two major types of ASL (i.e., PCASL and PASL)
data from normal healthy elderlies and AD patients were
tested. Our results showed that the NonDL which improved
the ASL image quality by removing outlier slices performed
the worst on both Dataset 2 and Dataset 3. Priors played an
important role in the algorithm design. If the datasets did not

match the priors, the outlier slices may not be removed effi-
ciently. While DL-based methods were data-driven. We
showed that DLASL can be directly transferred from young
adults’ data to data from older subjects as well as AD patients.
DLASL showed increased SNR and improved sensitivity for
using the corresponding CBF images for detecting the well-
characterized fronto-parietal brain hypoperfusion patterns in
AD as compared with NC. For different types of ASL data,
our results showed that model fine-tuning should be per-
formed since the direct transfer learning only showed minor
sensitivity improvement.

DLASL transfer learning yielded better CNR for the
NC and AD subjects’ CBF map than with NonDL. It also
better preserved image resolution than NonDL30 in terms of
less blurring and better preservation of tissue boundaries. This
performance gain is caused by the convolutional feature
extraction in DLASL and the two pathways-based DL

TABLE 3. Cluster Size, Peak t-Value, Mean CBF (Mean � SD) of Dataset 3

Method Cluster Size Peak t-Value Peak t-Locations AD Mean CBF NC Mean CBF

NonDL 993 �4.3021 �20, 12, 28 13.46 � 11.01 22.01 � 11.93

674 �3.7147 �12, �58, 34 34.73 � 6.00 46.12 � 6.83

530 �3.77 �18, �42, 6 19.71 � 6.86 30.19 � 6.45

268 �3.9791 16, 4, 26 3.49 � 2.39 10.82 � 2.37

138 �3.5764 36, 20, 44 24.69 � 3.25 37.08 � 2.49

DTF 1135 �3.6118 �2, �42, 30 32.99 � 3.26 38.52 � 3.44

101 �3.5874 �56, �24, �14 34.35 � 1.26 38.96 � 1.30

DLASLFT 3520 �4.6833 0, �40, 32 34.39 � 5.86 46.08 � 7.01

1331 �4.0005 6, �36, 2 26.78 � 6.58 36.49 � 6.43

406 �4.559 �56, �26, �10 38.02 � 3.16 48.82 � 3.76

326 �3.4955 �34, 10, 26 27.37 � 6.40 35.97 � 7.35

121 �3.6676 42, 48, 6 27.79 � 3.48 41.20 � 2.77

112 �3.8074 �6, �88, 4 37.55 � 7.42 48.29 � 7.37

AD = Alzheimer’s disease; CBF = cerebral blood flow; NC = normal controls.

TABLE 4. Three Radiologists’ Scores (Mean � SD) of 30 Subjects Selected From Dataset 3

NonDL DTF DLASLFT

Reviewer #1 2.27 � 0.91 2.23 � 0.63 2.50 � 0.73

Reviewer #2 2.27 � 0.87 1.83 � 1.05 2.67 � 0.84

Reviewer #3 2.80 � 0.89 2.00 � 0 3.40 � 0.56

Average of 3 reviewers 2.44 � 0.91 2.02 � 0.72 2.86 � 0.82
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network structure as well as the dilated wide activation resid-
ual block.4 The convolution-based feature extraction can sup-
press random noise. The dilated wide activation residual
block can extract data features from different aspects and
from non-local places.4 In this study, the global pathway was

used to capture global CBF patterns, and the local pathway
was to preserve local patterns. The former contributes to
higher SNR, and the latter preserves local tissue structure.
Together, they contribute to improved CNR and better
image details.4

The CBF map quality improvement by DLASL subse-
quently resulted in higher sensitivity for detecting the typical
hypoperfusion patterns in AD patients as compared with
NC. Hypoperfusion was statistically defined by the two-
sample t-test on CBF images of NC and AD. Both PCASL
and PASL data proved the direct transferability of DLASL.
This is because PCASL and PASL share the theoretical back-
ground and are both designed for measuring the quantitative
CBF though they differ by ASL schemes and SNR.31 The
common data features of the two types of data also explained
why the training loss and validation loss during fine-tuning
decreased faster than those during training from scratch.
Direct transfer and transfer learning with fine-tuning showed
a big denoising performance difference. The former showed
better CNR in the resultant CBF images than the latter, but
the latter presented higher hypoperfusion detection sensitiv-
ity. This difference can be attributed to the large SNR differ-
ence between PCASL and PASL.37 PCASL has much higher
SNR than PASL. Young healthy subjects have higher CBF
values than old subjects and AD patients. Likely, the old sub-
jects and AD patients’ PASL data cannot be fully modeled by
the data features learned from the young subjects’ PCASL
data, resulting in a superficial over-denoising. Fine-tuning the
model with old subjects’ PASL data helped refining the
learned data distribution, which explained why the CNR
dropped after fine-tuning but the AD vs. NC CBF difference
(hypoperfusion) detection sensitivity increased. Because the
sample size of the PASL data was much smaller than the
young adults’ PCASL data (Dataset 1), the risk of overfitting
to PASL data is low even when all PASL data were included
as new training data during fine-tuning. In fact, if PASL data
overfitting occurred, the DLASL output would be the same
as the input PASL data, and the hypoperfusion patterns
would be the same as the NonDL processed CBF data. The
early stopping strategy we used also reduced the risk of data
overfitting.

After the three reviewers completed the image quality
evaluation, we noticed that reviewer #3 assigned the same
score of 2 to DTF results across all 30 subjects (both AD and
NC). We conjectured that the images generated by DTF
were with contrasts that were different from the other two
methods. The DTF model achieved the best CNR in Dataset
3, but it performed the worst on Dataset 3 in terms of radio-
logic score. Our explanation was that the DTF model derived
the knowledge from the PCASL sequence of Dataset 2. When
DTF was used to denoise the PASL sequence images in
Dataset 3, it would generate denoised results as the PCASL
sequence. The best CNR of the DTF model was attributed

FIGURE 9: Comparison of reading score between different
methods over 30 subjects’ CBF maps using 100% stacked bar
chart. Reading scores are displayed with four different colors.
CBF = cerebral blood flow.
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to the training PCASL data in Dataset 1 were from younger
healthy subjects (age: 23–47) with stronger blood flow signal
than subjects in Dataset 3 (age: 59–87). In addition, the
higher SNR of PCASL compared with PASL31 also contrib-
uted to the higher CNR of DTF than the NonDL and
DLASLFT. The worst radiologic score of DTF was because
that DTF model can only generate results like healthy sub-
jects of PCASL sequence which were visually different from
the older subjects of PASL sequence. Since the DTF model
was trained using PCASL images instead of PASL images,
DTF model cannot perform well on unseen PASL images.
So, it was necessary to do the model fine-tuning on PASL
images, i.e., DLASLFT. And DLASLFT (i.e., DLASL with
fine-tuning) outperformed NonDL method on PASL images,
which is consistent with the previous study4 that showed
DLASL outperformed NonDL on PCASL images in terms of
the radiologic score.

Limitations
First, we only used 2D slices instead of the 3D ASL MRI
scans due to the complexity involved in the 3D DL model.38

We did not take advantage of the correlation between slices.
Second, the AD and NC subjects included in this study may
still not be sufficient to cover the entire population. We have
planned to evaluate the proposed method on a larger cohort
in the foreseeable future. Finally, we need further rigorous
validation on a larger study cohort of the transfer learning of
the DL ASL denoising, which is another direction of our
future research.

Conclusion
DLASL trained in healthy subjects’ PCASL data can be
directly applied to older healthy subjects’ and AD patients’
PCASL data. Model fine-tuning is recommended for using
the model trained from young healthy subjects’ data to NC
and AD’s PASL acquired at different sites. DLASL is clini-
cally valuable for improving ASL CBF sensitivity for detecting
the NC vs. AD CBF difference.
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